

Evaluation of CO₂ Capture and Sequestration Using Oxyfuels with AMIGA Economic Modeling

National Energy Technology Laboratory 2010 CO₂ Capture Technology Meeting September 13-17, 2010 — Pittsburgh, Pennsylvania

Richard D. Doctor ChE, P.E.; and **Dr. Donald A. Hanson** Economist Collaboration with **Dr. John C. Molburg** and **Dr. David Schmalzer**

ANNUAL REPORT 2010: Evaluation of CO₂ Capture and Sequestration Using Oxyfuels with AMIGA Economic Modeling

Oxyfuel CO₂ recovery from pulverized-coal-fired power plants was extended across the existing fleet of domestic PC boilers linking process modeling (ASPEN) and assessing the economic impacts through a macroeconomic model (AMIGA—All-Modular Industry Growth Assessment.) The full energy cycle was considered, including mining, coal transportation, coal preparation, power generation, existing environmental regulations, facility water use, pipeline CO₂ conditioning, and pipeline transport of CO₂ to sequestration.

• **FY2010** \$260K

• **Funding FY2008-2010** \$780K

Contractor
 Argonne National Laboratory

Contractor Project Manager
 Dr. Mark C. Petri

Principal Investigator
 Richard D. Doctor

Co-Principal Investigator
 Dr. Donald A. Hanson

Project Management Timothy Fout

Current Project: Evaluation of CO₂ Capture and Sequestration Using Oxyfuels with AMIGA Economic Modeling (FE49539 - Tim Fout)

- Use ASPEN to model Oxyfuels retrofit across the existing fleet of domestic PC boilers as a CO₂ Capture and Sequestration (CCS) strategy
- Cost-Engineering for Oxyfuels based on ASPEN
- Recognize that Oxyfuel investment may be a transitional strategy to Integrated Gasification Combined Cycle with CCS
- Link to an ongoing effort with the AMIGA (All-Modular Industry Growth Assessment) as the Computational General Equilibrium (CGE) macroeconomic, sector, & energy model
- Study the sectoral impacts of Oxyfuel CCS with AMIGA
- Limited consideration of site specific issues such as CO₂ transport and water availability

Oxyfuels process modeling will accelerate deployment

- 1. PC Boiler Gas-side Oxyfuels compared to Amines What are the benefits?
 - Oxyfuels avoids SCR, lowering costs.
- **2.** Oxygen delivery What is the optimal O_2 purity for Oxyfuels?
 - Higher purity O_2 is important in managing N_2 and Argon. However, too high a purity of O_2 leads to dis-proportionation. This is an economic trade-off.
- 3. Steam-cycle What will be the impact on steam cycles?
 - Rebalancing the steam cycle and turbines will be necessary for CCS using Amines
- 4. Flue Gas Desulfurization What is CO₂ leakage with sulfur control?
 - There is a clear advantage to supplying higher purity O_2 from ASU. CO_2 leakage justifies O_2 use for Forced Oxidation
 - Moisture from FGD increases costs of downstream CO₂ conditioning
- 5. CO_2 conditioning What will CO_2 conditioning cost?
 - 2 cold boxes are not sufficient for meeting some reservoir specifications and an EOR CO₂
 tower was added
 - Dilution of CO₂ by non-condensable gases Argon, O₂ and N₂ lowers the temperature required for liquefaction

Process design supplies essential intermediate stream details addressing important process issues

Energy System Simulations Instill Investor Confidence in Undertaking Oxyfuel Retrofits.

Our simulations highlight four scenario cases as listed below:

- 1. Attractive Private Investment. Electric utilities naturally like to life extend their existing power plants while addressing CO₂ emissions.
 - How will parasitic load and derating be mitigated through system-wide adjustments?
- **2. Perceived GHG urgency.** Actions that can be accomplished in the near- to medium-term may be favored in today's policy environment.
 - Might near-term retrofits be mandated?
 - How will experience with retrofits accelerate other generating technologies with CCS?
 - How will Oxyfuel retrofits play under economy-wide GHG reduction targets in 2050?
 - What are resulting economy-wide CO₂ emissions?

Energy System Simulations Instill Investor Confidence in Undertaking Oxyfuel Retrofits. Scenario cases (Continued)

- 3. Transportation Electrification. Demand for generation technologies will increase.
 - What will comprise the expanded generation fleet to accommodate plug-in vehicles, new electric regional transit, and continued growth in innovative electric devices?
- 4. Energy Security Needs. Domestic coal use with CCS fosters energy security.
 - Will global transition economies continue with rapid growth?
 - Will co-production plants be needed to supplement petroleum, particularly diesel fuel?

Air and Oxyfuel systems were run at 150, 300 and 450 MW with 3 standard coals - These are being explored with variations in O_2 95-99.5%

ASPEN: Oxyfuels - Steam-side simulation Critical to comparing Amine retrofits to Oxyfuels

FGD with electrolytes: 450 MW Oxyfuel IL#6 coal

FGD Design Conditions for 99.5% SO₂ removal

- L/G 85 -115 gal/1000 acfm
- Forced Oxidation $O_2/SO_2 2:1$
- Forced Oxidation air to Crystallizer from Cryogenic ASU O_2 (99.6% purity) to avoid N_2 and Argon infiltration
- Thickener underflow 35% solids (and operating temperature)
- Gypsum
 Sulfate:Sulfite (10:1) also occluded water

For 450 MW Oxyfuel – Illinois #6 coal

- Oxygen use = 3.9 tonne/hr
- CO₂ "slip" with Air Forced Oxidizer off-gas= 16 tonnes/hr
- Argon in CO₂ exit gas goes up by 10%
- CO₂ leakage justifies O₂ use for Forced Oxidation
- Dilution of CO₂ by non-condensable gases Argon, O₂ and N₂ lowers the temperature required for liquefaction to levels that may not be achievable with evaporative cooling towers alone.
- The concentration of non-condensable gases may violate safe operating specifications for the pipeline.

Weyburn CO₂ delivery operates under reducing conditions with H₂S (not SO₂ as in Oxyfuels) it is O₂ free

Kenneth Vargos, Restaged CO₂ compressors, new pumps remove bottleneck at Weyburn, Oil & Gas Journal November 16, 2009 Vol. 107 Issue 43 (Note: the high Hydrocarbons are C₁-C₃)

CO₂ Delivery and Recirculation using 4 cold boxes followed by an EOR CO₂ tower (10 ppm O₂ case)

FGD is a convenient sink for knock-out

Process Design - Conclusions

- Process design supplies essential intermediate stream details addressing important process issues
- Oxyfuels process modeling will accelerate deployment

Managing Your Existing Plant Asset: Considerations

- When is the best time to retrofit your unique plant?
 - Retrofit costs may decrease with R&D results; performance may increase
 - Experience/learning will increase over time
 - Price of a CO₂ allowance (carbon charge) will likely increase
 - Plant may be in need of refurbishment
- Positive tradeoffs
 - Less expenditures on carbon allowances
 - More efficient due to attendant refurbishment/life-extension investments
 - Higher Capacity Factor due to lower total variable costs (i.e., higher dispatch)
- Negative tradeoffs
 - Loss of electricity sales due to capacity derating after retrofit
 - Retrofit/refurbishment capital outlays (but less than a new advanced coal plant)

Overview of the AMIGA Model General Equilibrium System including the Utility Planning and Compliance Model and Unit Inventory

Analysis of Carbon Reduction Policy Scenarios

- In this scenario, electricity demand is growing at an average of 0.89% per year:
 - Increased electrification from plug-in HEVs
 - Increased electrification from continued growth in electrical/electronic equipment
 - Balanced by greater energy efficiency efforts
- Increased gas production from the Marcellus and other gas shales, under a carbon policy, is diverted from power generation to industrial/commercial CHP, and transportation uses (CNG LDV fleets, LNG heavy truck fleets)
- Based on our Stanford University Energy Modeling Forum simulations we use a price path for CO2 which grows at 2% per year (about the rate of economic growth), but with an initial 5-year phase-in period
- The CO₂ price path shifts up if the overall CO₂ reduction target needs to be tighter
- In the following run:
 - 368 existing PC units (150 GW) are retrofitted with CCS over the period 2022 to 2038
 - These tend to be the newer, larger, more efficient units
 - The average size is 410 MW
 - NETL and partners meet capture performance and cost goals for existing and new units

Generation Showing the Conversion of 368 Existing Units to Carbon Capture and Storage and the Penetration of New Advanced Design Oxycombustion and IGCC plants

Electric generation

Coal Use May Dip in the 2035 Period

Coal Consumption

CO2 Emissions from Existing Units Mostly Disappear

Existing Plant CO2 Emissions

CO2 Capture from Existing Units Provides an Opportunity to Gain Experience with CCS Prior to Major Investment in New Advanced Oxyfuel and IGCC Designs

Existing Plant CO2 Capture

Anticipated Further Work

- Update the AMIGA economic model with the latest thinking on electrification of transportation (plug-in HEVs, high speed rail) and the rapid growth in electrical/electronic equipment, "i.e. Miscellaneous Electrical Loads", or MELS
- Provide an economic analysis of how the increasing natural gas production will best be used in competing markets for gas (e.g., transportation, CHP)
- Simulate the benefits of retrofitting existing power plants with CCS to meet electrification demands and Energy Security
- Apply selection criteria and cost estimates for ramping up PC unit retrofits with CCS using Phase 2 Enegis data base (as it becomes available)
 - Simulate low carbon capacity expansion using the AMIGA Utility Planning and Compliance model
 - Provide regional system dispatch (how existing units are used in the system)
 - Serve on the Federal/Industry Steering Committee (FISC)
- Participate in the Stanford EMF-24 study, showing the role of retrofitting existing units with CCS.

